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Abstract. In a sequential Bayesian ranking and selection problem with independent normal
populations and common known variance, we study a previously introduced measurement policy
which we refer to as the knowledge-gradient policy. This policy myopically maximizes the expected
increment in the value of information in each time period, where the value is measured according to
the terminal utility function. We show that the knowledge-gradient policy is optimal both when the
horizon is a single time period and in the limit as the horizon extends to infinity. We show furthermore
that, in some special cases, the knowledge-gradient policy is optimal regardless of the length of any
given fixed total sampling horizon. We bound the knowledge-gradient policy’s suboptimality in the
remaining cases, and show through simulations that it performs competitively with or significantly
better than other policies.
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1. Introduction. We consider a ranking and selection problem in which we are
faced with M ≥ 2 alternatives, each of which can be measured sequentially to estimate
its constant but unknown underlying average performance. The measurements are
noisy, and as we obtain more measurements, our estimates become more accurate.
We assume normally distributed measurement noise and independent normal Bayesian
priors for each alternative’s underlying average performance. We have a budget of N
measurements to spread over the M alternatives before deciding which is best. The
goal is to choose the alternative with the best underlying average performance.

Information collection problems of this type arise in a number of applications:
(i) Choosing the chemical compound from a library of existing test compounds

that has the greatest effectiveness against a particular disease. A compound’s
effectiveness may be measured by exposing cultured cells infected with the
disease to the compound and observing the result. The compound found most
effective will be developed into a drug for treating the disease.

(ii) Choosing the most efficient of several alternative assembly line configurations.
We may spend a certain short amount of time testing different configurations,
but once we put one particular configuration into production, that choice will
remain in production for a period of several years.

(iii) Selecting the best of several policies applied to a stochastic Markov decision
process. The policies may be evaluated only through Monte Carlo simulation,
so a method of ranking and selection is needed to determine which policy is
best. This selection may be as part of a larger algorithm for finding the
optimal policy as in evolutionary policy iteration [3].
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A KNOWLEDGE-GRADIENT POLICY 2411

In this article we study a measurement policy introduced in [16] under the name of
the (R1, . . . , R1) policy, and referred to herein as the knowledge-gradient (KG) policy.
We briefly describe this policy and leave further description for section 4.1. Let μn

x

and (σn
x )2 denote the mean and variance of the posterior predictive distribution for the

unknown value of alternative x after the first n measurements. Then the KG policy
is the policy that chooses its (n + 1)st measurement XKG((μn

1 , σ
n
1 ), . . . , (μn

M , σn
M ))

from within {1, . . . ,M} to maximize the single-period expected increase in value,
En

[
(maxx′ μn+1

x′ ) − (maxx′ μn
x′)

]
, where En indicates the conditional expectation with

respect to what is known after the first n measurements. That is,

XKG((μn
1 , σ

n
1 ), . . . , (μn

M , σn
M )) ∈ arg max

xn∈{1,...,M}
En

[
(max

x′
μn+1
x′ ) − (max

x′
μn
x′)

]
.

In this expression the expectation is implicitly a function of xn, the measurement de-
cision at time n. If the maximum is attained by more than one alternative, then
we choose the one with the smallest index. As the terminal reward is given by
maxx=1,...,M μN

x , this policy is like a gradient ascent algorithm on a utility surface
with domain parameterized by the state of knowledge ((μ1, σ1), . . . , (μM , σM )). It
may also be viewed as a single-step Bayesian look-ahead policy.

In this work we continue the analysis of [16]. We demonstrate that the KG policy,
introduced there as the most rudimentary of a collection of potential policies and
studied for its simplicity but neglected thereafter, is actually a powerful and efficient
tool for ranking and selection that should be considered for application alongside
current state-of-the-art policies. As discussed in detail in section 2, a number of other
sequential Bayesian look-ahead policies have been derived in recent years by solving
a sequence of single-stage optimization problems just as the KG policy does, and,
among these, the optimal computing budget allocation for linear loss of [18] and the
LL(S) policy of [12] assume situations most similar to the one assumed here. The
KG policy differs, however, from these other policies in that it solves its single-stage
problem exactly, while the other policies must use approximations. We believe that
solving the look-ahead problem exactly offers an advantage.

After formulating the problem in section 3 and defining the policy in section 4, we
show in section 5 that the KG policy is optimal in the limit as N → ∞ in the sense that
the policy incurs no opportunity cost in the limit as infinitely many measurements
are allowed. Also, by its construction and as noted in [16], KG is optimal when
there is only one measurement remaining. This provides optimality guarantees at
two extremes: N large and N small. While many policies are asymptotically optimal
without performing particularly well in the finite sample case, a policy with both
kinds of optimality satisfies a more stringent performance check. For example, the
equal-allocation policy is asymptotically optimal, but it is not optimal when N = 1,
except in certain special cases, and performs poorly overall. In the other extreme,
myopic policies for generic Markov decision processes often perform poorly because
they ignore long-term rewards. By being optimal for both N = 1 and N = ∞, KG
avoids the problem that most afflicts other myopic policies, while retaining single-
sample optimality.

In accordance with our belief that optimality at two extremes suggests good per-
formance in the region between, we provide a bound on the policy’s suboptimality for
finite N in section 6. In section 7 we introduce the KG persistence property and use
it to show both optimality for the case when M = 2 and for a further special case
in which the means and variances are ordered. Our proof that KG is optimal when



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2412 P. I. FRAZIER, W. B. POWELL, AND S. DAYANIK

M = 2 confirms a claim made by Gupta and Miescke [15], who showed its optimality
among deterministic policies for M = 2, but did not offer a formal proof for optimality
among sequential policies. Finally, in section 8, we demonstrate in numerical exper-
iments that KG performs competitively against the other policies discussed here. In
particular, the KG policy is best according to the measure of average performance
across a number of randomly generated problems, and the margin by which it out-
performs the best competing policies on the most favorable problems is significantly
larger than the margin by which it is outperformed on the most unfavorable problems.

2. Literature review. The KG policy was introduced in [16] as the simplest
of a collection of look-ahead policies and was studied because its simplicity provided
tractability, but this simple policy has seldom been studied or applied in the years
since. Instead, a number of more complex Bayesian look-ahead policies have been
introduced. A series of researchers beginning with [4] and continuing with [5], [9], [7],
[8], [6] proposed and then refined a family of policies known as the optimal computing
budget allocation (OCBA). These policies are derived by formulating a static opti-
mization problem in which one chooses the measurements to maximize the probability
of later correctly selecting the best alternative. OCBA policies solve this optimization
problem by approximating the objective function with various bounds and relaxations,
and by assuming that the predictive mean will remain unchanged by measurement.
They then solve the approximate problem using gradient ascent or greedy heuristics,
or with an asymptotic solution that is exact in the limit as the number of measure-
ments in the second stage is large. All OCBA policies assume normal samples with
known sampling variance, but in practice one may estimate this variance through
sampling.

Any OCBA policy can be extended to multistage or fully sequential problems by
performing the second stage of the two-stage policy repeatedly, at each stage calling
all previous measurements the first stage and the set of measurements to be taken
next the second stage. It is in this extension that one sees the similarity to the one-
step Bayesian look-ahead approach of KG, which extends the one-stage policy which
is optimal with one measurement remaining to a sequential policy by supposing at
each point in time that the current measurement will be the last.

The OCBA policies mentioned above are designed to maximize the probability
of correctly selecting the best alternative, while KG is designed to maximize the
expected value of the chosen alternative. These different objective functions are also
termed 0−1 loss and linear loss, respectively. They are similar but not identical, 0−1
loss perhaps being more appropriate when knowledge of the identity of the best is
intrinsically valuable (and where accidentally choosing the second best is nearly as
harmful as choosing the worst), and linear loss being more appropriate when value is
obtained directly by implementing the chosen alternative.

Recently [18] introduced an OCBA policy designed to minimize expected linear
loss. Although more similar to KG than other OCBA policies, it differs in that it uses
the Bonferroni inequality to approximate the linear loss objective function for a single
stage, and then solves the approximate problem using a second approximation which
is accurate in the limit as the second stage is large. This is in contrast to KG, which
solves the single-stage problem exactly. The OCBA policy in [18] does not assume,
as the other OCBA approaches do, that the posterior predictive mean is equal to the
prior predictive mean, and in this regard it is more similar to the approach of [12]
discussed below.

A set of Bayesian look-ahead ranking and selection policies distinct from OCBA
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were introduced in [12]. They differ by not assuming the predictive means equal
through time and by allowing the sampling variance to be unknown. This causes the
posterior predictive mean to be student-t distributed, inducing an optimization prob-
lem governing the second-stage allocation with an objective function that is somewhat
different from that in OCBA formulations. This objective function, corresponding to
expected loss, is bounded below, and this lower bound is then approximately min-
imized. The resulting solution minimizes the lower bound exactly in the limit as
sampling costs are small, or as the number of second-stage measurements is large.

Six policies are derived in total by considering both 0−1 and linear loss under
three different settings: two-stage measurements with a budget constraint; two-stage
without a budget constraint; and sequential. Among these policies, the one most
similar to KG is LL(S), which uses linear loss in a sequential setting, allocating τ
measurements at a time.

In [10] an unknown-variance version of the KG policy was developed under the
name LL1. The authors compared LL1 to LL(S) using Monte Carlo simulations
and found that LL1 performed well for a small sampling budget, but degraded in
performance as the sampling budget increased. We briefly discuss how these results
relate to our own in section 8.

In addition to the Bayesian approaches to sequentially ranking and selecting nor-
mal populations described thus far, a substantial amount of progress has been made
using a frequentist approach. We do not review this literature in detail, but state
only that an overview may be found in [1] and that a more recent policy which per-
forms quite well in the multistage setting with normal rewards is given in [23], [22].
Other sequential and staged policies for independent normal rewards with frequentist
guarantees include those in [25], [27], [17], [26], and [24].

Sequential tests also exist which choose measurements based upon confidence
bounds for the value Yx. Such tests include interval estimation [19], which was devel-
oped for on-line bandit-style learning in a reinforcement learning setting, and upper
confidence bound estimation [3], which was developed for estimating value functions
for Markov decision processes. Both tests form frequentist confidence intervals for
each Yx and then select the alternative with the largest upper bound on its confi-
dence interval for measurement. Such policies have general applicability beyond the
independent normal setting discussed here.

3. Problem formulation. We state a formal model for our problem, including
transition and objective functions. We then formulate the problem as a dynamic
program.

3.1. A formal model. Let (Ω,F ,P) be a probability space and let {1, . . . ,M}
be the set of alternatives. For each x ∈ {1, . . . ,M} define a random variable Yx to
be the true underlying value of alternative x. We assume a Bayesian setting for the
problem in which we have a multivariate normal prior predictive distribution for the
random vector Y , and we further assume that the components of Y are independent
under the prior and that maxx=1,...,M |Yx| is integrable. We will be allotted exactly N
measurements, and time will be indexed using n with the first measurement decision
made at time 0. At each time 0 ≤ n < N , we choose an alternative xn to measure.
Let εn+1 be the measurement error, which we assume is normally distributed with
mean 0 and a finite known variance (σε)2 that is the same across all alternatives. We
also assume that errors are independent of each other and of the random vector Y .
Then define ŷn+1 = Yx + εn+1 to be the measurement value observed. At time N , we
choose an implementation decision xN based on the measurements recorded, and we
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receive an implementation reward ŷN+1. We assume that the reward is unbiased, so
that ŷN+1 satisfies E

[
ŷN+1|Y, xN

]
= YxN . Define the filtration (Fn)Nn=0 by letting Fn

be the sigma-algebra generated by x0, ŷ1, x1, . . . , xn−1, ŷn. We will use the notation
En[·] to indicate E[ · | Fn], the conditional expectation taken with respect to Fn.
Measurement and implementation decisions xn are restricted to be Fn-measurable so
that decisions may depend only on measurements observed and decisions made in the
past.

Let μ0 := E [Y ] and Σ0 := Cov [Y ] be the mean and covariance of the predic-
tive distribution for Y so that Y has prior predictive distribution N (μ0,Σ0) and Σ0

is a diagonal covariance matrix. Note that our assumed integrability of maxx |Yx|
is equivalent to assuming integrability of every Yx because |Yx′ | ≤ maxx |Yx| and
maxx |Yx| ≤ |Y1| + · · · + |YM |, which is equivalent to assuming Σ0

xx finite for every x.
We will use the Bayes rule to form a sequence of posterior predictive distributions

for Y from this prior and the successive measurements. Let μn := En [Y ] be the mean
vector and Σn := Cov [Y | Fn] the covariance matrix of the predictive distribution af-
ter n measurements have been made. Because the error term εn+1 is independent and
normally distributed, the predictive distribution for Y will remain normal with inde-
pendent components, and Σn will be diagonal almost surely. We write (σn

x )2 to refer
to the diagonal component Σn

xx of the covariance matrix. Then Yx ∼ N (μn
x , (σ

n
x )2)

conditionally on Fn. We will also write βn
x := (σn

x )−2 to refer to the precision of the
predictive distribution for Yx, βn := (βn

1 , . . . , β
n
M ) to refer to the vector of precisions,

and βε := (σε)−2 to refer to the measurement precision. Note that σε < ∞ implies
βε > 0.

Our goal will be to choose the measurement policy (x0, . . . , xN−1) and implemen-
tation decision xN that maximizes E [YxN ]. The implementation decision xN that
maximizes EN [YxN ] = μN

x is any element of arg maxx μ
N
x , and the value achieved is

maxx μ
N
x . Thus, letting Π be the set of measurement strategies π = (x0, . . . , xN−1)

adapted to the filtration, we may write our problem’s objective function as

(1) sup
π∈Π

E
π
[
max

x
μN
x

]
.

3.2. State space and transition function. Our state space is the space of
all possible predictive distributions for Y . It can be shown by induction that these
are all multivariate normal with independent components. We formally define the
state space S by S := R

M × (0,∞]M , and it consists of points s = (μ, β) where,
for each x ∈ {1, . . . ,M}, μx and βx are, respectively, the mean and precision of a
normal distribution. We will write Sn := (μn, βn) to refer to the state at time n. The
notation Sn will refer to a random variable, while s will refer to a fixed point in the
state space.

Fix a time n. We use the Bayes rule to update the predictive distribution of Yx

conditioned on Fn to reflect the observation ŷn+1 = Yx + εn+1, obtaining a posterior
predictive distribution conditioned on Fn+1. Since εn+1 is an independent normal
random variable and the family of normal distributions is closed under sampling,
the posterior predictive distribution is also normal. Thus our posterior predictive
distribution for Yx is N (μn+1

x , 1/βn+1
x ), and writing it as a function of the prior and

the observation reduces to writing μn+1 and βn+1 as functions of μn, βn, and ŷn+1.
The Bayes rule tells us that these functions are

μn+1
x =

{[
βn
xμ

n
x + βεŷn+1

]
/βn+1

x if xn = x,

μn
x otherwise,

(2)
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βn+1
x =

{
βn
x + βε if xn = x,

βn
x otherwise.

(3)

Conditionally on Fn, the random variable μn+1 has a multivariate normal distri-
bution whose mean and variance we can compute. First, we use the tower property of
conditional expectation and the definitions of μn and μn+1 as the predictive means of
Y given Fn and Fn+1, respectively, to write En

[
μn+1

]
= En [En+1 [Y ]] = En [Y ]=μn.

Then we compute the variance of μn+1 componentwise. For those alternatives x �= xn

that we do not measure, our posterior is equal to our prior and μn+1 = μn. This
shows that Var

[
μn+1
x | Fn

]
= 0 if x �= xn. For x = xn this variance is generally

positive. Let us define

(4) σ̃n
x :=

√
Var

[
μn+1
x | Fn, xn = x

]
,

so that (σ̃n
x )2 is equal to Var

[
μn+1
x | Fn, xn = x

]
. This variance may be interpreted

as the variance of the change in the predictive mean μn+1
x − μn

x caused by a measure-
ment as Var

[
μn+1
x | Fn, xn = x

]
= Var

[
μn+1
x − μn

x | Fn, xn = x
]
. As shown in the

following proposition, it is also equal to the reduction in predictive variance, i.e., the
reduction in “uncertainty,” caused by a measurement.

Proposition 3.1. For every x = 1, . . . ,M , we have (σ̃n
x )2 = (σn

x )2 − (σn+1
x )2.

Proof. We begin with the relation

(μn+1
x − Yx) = (μn+1

x − μn
x) + (μn

x − Yx).

Squaring both sides, taking the expectation with respect to Fn+1, and noting that
(σn+1

x )2 = En+1

[
(Yx − μn+1

x )2
]

gives

(σn+1
x )2 = En+1

[
(μn

x − Yx)2
]

+ 2En+1

[
(μn

x − Yx)(μn+1
x − μn

x)
]
+ En+1

[
(μn+1

x − μn
x)2

]
= En+1

[
(μn

x − Yx)2
]
+ 2(μn

x − μn+1
x )(μn+1

x − μn
x) + (μn+1

x − μn
x)2

= En+1

[
(μn

x − Yx)2
]
− (μn+1

x − μn
x)2.

Since σn+1
x ∈ Fn, we may take the expectation with respect to Fn to get

(σn+1
x )2 = En

[
En+1

[
(μn

x − Yx)2
]]

− En

[
(μn+1

x − μn
x)2

]
= En

[
(μn

x − Yx)2
]
− En

[
(μn+1

x − μn
x)2

]
= (σn

x )2 − (σ̃n
x )2.

To more easily compute σ̃n
x , define a function σ̃ : (0,∞] 	→ [0,∞) by

(5) σ̃(βx) =
√

(βx)−1 − (βx + βε)−1.

Then we have that σ̃n
x = σ̃(βn

x ) by Proposition 3.1 applied to the identities (σn+1
x )2 =

(βn+1
x )−1 = (βn

x + βε)−1 and (σn
x )2 = (βn

x )−1.
Remark 3.1. For βx ∈ (0,∞), we have that (σ̃(βx))2 = βε/[(βx+βε)βx] is strictly

decreasing in βx, and thus so is σ̃(βx).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2416 P. I. FRAZIER, W. B. POWELL, AND S. DAYANIK

Since μn+1
xn is a normal random variable with conditional mean μn

xn and condi-
tional variance (σ̃(βn

xn))2 under Fn, we can write in terms of an Fn adapted sequence
Z1, . . . , ZN of standard normal random variables,

μn+1 = μn + σ̃(βn
xn)Zn+1exn ,(6)

βn+1 = βn + βεexn ,(7)

where ex is a vector in R
M with all components zero except for component x, which

is equal to 1. We also define a function T : S × {1, . . . ,M} × R 	→ S by

(8) T ((μ, β), x, z) := (μ + σ̃(βx)zex, β + βεex),

so that Sn+1 = T (Sn, xn, Zn+1). This is our transition function.
We briefly recall and summarize the random variables which play a role in the

measurement process. The underlying and unknown value of alternative x is denoted
Yx and is randomly fixed at the beginning of the measurement process. At time n, μn

x

is our best estimate of Yx, and βn
x is the precision with which we make this estimate.

The result of our time n measurement causes us to update this estimate to μn+1
x ,

which we now know with precision βn+1
x . This change from μn

x to μn+1
x is random,

and furthermore is normally distributed with mean 0 and standard deviation σ̃(βn
x )

when we measure alternative x.
One may think of Yx as fixed and of μn

x as converging toward Yx while βn
x con-

verges to infinity under some appropriately exploratory sampling strategy. It is also
appropriate, however, to fix μn

x and βn
x (this is the essential content of conditioning on

Fn) and think of Yx as an unknown quantity. From this viewpoint, Yx is random and,
furthermore, is normally distributed with predictive mean μn

x and precision βn
x . This

randomness does not imply that Yx must be chosen again according to the predictive
normal distribution, but instead the predictive normal distribution only quantifies our
uncertain knowledge of the value Yx adopted when it was first chosen.

3.3. Dynamic program. We apply a dynamic programming approach to our
problem. In this approach, the value function is defined as the value of the optimal
policy given a particular state Sn at a particular time n, and may also be deter-
mined recursively through Bellman’s equation. If the value function can be computed
efficiently, the optimal policy may then also be computed from it. Although in this
problem the “curse of dimensionality” makes direct computation of the value function
difficult even for M as small as 3, the dynamic programming principle still provides
a valuable method for studying the problem.

The terminal value function V N : S 	→ R is given by (1) as

V N (s) := max
x∈{1,...,M}

μx for every s = (μ, β) ∈ S.(9)

The dynamic programming principle tells us that the value function at any other time
0 ≤ n < N is given recursively by

V n(s) = max
x∈{1,...,M}

E
[
V n+1(T (s, x, Zn+1))

]
, s ∈ S.(10)

We define the Q-factors, Qn : S × {1, . . . ,M} 	→ R, as

Qn(s, x) := E
[
V n+1(T (s, x, Zn+1))

]
, s ∈ S,(11)
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and the dynamic programming principle tells us that any policy whose measurement
decisions satisfy

X∗n(s) ∈ arg max
x∈{1,...,M}

Qn(s, x), s ∈ S,(12)

is optimal. Finally, we define the value of a measurement policy π ∈ Π as

V n,π(s) := E
π
[
V N (SN ) | Sn = s

]
, s ∈ S.(13)

This same object might also be thought of as the reward-to-go from state s at time n
under policy π.

Later we will need several preliminary results concerning the benefit of measure-
ment. First, the following proposition states that, under the optimal policy, it is
always better to make a measurement than to measure nothing at all. Here, the value
of measuring alternative x when Sn = s at time n is Qn(s, x), and the value of making
no measurement is V n+1(s). The proof is left until Appendix A.

Proposition 3.2. Qn(s, x) ≥ V n+1(s) for every 0 ≤ n < N , s ∈ S, and
x ∈ {1, . . . ,M}.

We see as a corollary to this proposition that the optimal policy will never measure
an alternative with zero variance (i.e., with infinite precision) unless all the other
alternatives also have zero variance. In other words, there is no value to measuring
something that we know perfectly. This is stated precisely in the following corollary.

Corollary 3.1. Let i, j ∈ {1, . . . ,M}, n < N , and s = (μ, β) ∈ S. If βj = ∞,
then Qn(s, i) ≥ Qn(s, j).

Proof. Since σ̃(βj) = σ̃(∞) = 0 and βj + βε = βj ,

T (s, j, Zn+1) = (μ + σ̃(βj)Z
n+1ej , β + βεej) = (μ, β) = s.

Then, by Proposition 3.2,

Qn(s, j) = E
[
V n+1(T (s, j, Zn+1))

]
= V n+1(s) ≤ Qn(s, i).

We also have a second corollary to the proposition. Proposition 3.2 allowed arbi-
trarily specifying the alternative to which the extra measurement would be applied,
while this corollary points out that the extra measurement may be made according to
the optimal policy, in which case Qn(s, x) is equal to V n(s). We will use this corollary
in section 6 to bound the suboptimality of KG.

Corollary 3.2. V n+1(s) ≤ V n(s) for all states s ∈ S.
Proof. In Proposition 3.2, take the extra measurement x to be the measurement

made by the optimal policy in state s.
Let us say that a policy π is stationary if Xπ,n(s) = Xπ,0(s) for all s ∈ S and all

n = 1, . . . , N − 1. In this case we denote Xπ,n simply by Xπ. Corollary 3.2 showed
that the value of the optimal policy increases as more measurements are allowed, and
we will see in Theorem 3.1 below that this monotonicity also holds for stationary
policies.

Theorem 3.1. V π,n(s) ≥ V π,n+1(s) for every stationary policy π and every state
s ∈ S.

The proof is left until Appendix A. We will need this theorem when showing both
asymptotic optimality and bounded suboptimality of KG.
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4. The knowledge-gradient policy. In our problem, the entire reward is re-
ceived after the final measurement. We may formulate an equivalent problem in which
the reward is given in pieces over time, but the total reward given is identical. We
define the KG policy as that policy which maximizes the single period reward under
this alternate formulation. We will see later that this KG policy is optimal in several
cases and has bounded suboptimality in all others. This policy was first introduced
in [16] under the name of the (R1, . . . , R1) policy.

4.1. Definition. The problem given by (1) has a terminal reward V N (SN ) :=
maxx μ

N
x , but no rewards at any other times. We restructure these rewards by writing

V N (SN ) as a telescoping sequence,

max
x

μN
x =

[
V N (SN ) − V N (SN−1)

]
+ · · · +

[
V N (Sn+1) − V N (Sn)

]
+ V N (Sn).

Thus, the problem that provides single period reward V N (Sn) at time n and V N (Sk)−
V N (Sk−1) at times k = n + 1, . . . , N is equivalent to problem (1) because the total
reward provided is the same in each case. The KG policy πKG is defined as the policy
that chooses its measurements to maximize the expectation of the single period re-
ward provided under this alternate formulation, En

[
V N (T (Sn, x, Zn+1)) − V N (Sn)

]
.

Since the (Zn)Nn=1 are independent and identically distributed normal random vari-
ables, we may take Z to be a generic standard normal random variable and write the
decision function of the KG policy XKG : S 	→ {1, . . . ,M} as

(14) XKG(s) ∈ arg max
x∈{1,...,M}

E
[
V N (T (s, x, Z)) − V N (s)

]
for every s ∈ S,

where ties in the arg max are broken by choosing the alternative with the smaller
index. Note that KG is stationary in time so we drop the time index n when we write
XKG. Since V N (s) does not depend on x, the KG policy may be rewritten as

XKG(s) ∈ arg max
x∈{1,...,M}

E
[
V N (T (s, x, Z))

]
= arg max

x∈{1,...,M}
QN−1(s, x).(15)

Remark 4.1. As noted in [16], KG is optimal by construction when N = 1. This
is because V N−1 = V KG,N−1 by (12) and (15), where V KG,n denotes the value of the
KG policy at time n and is defined according to (13) with the policy π fixed to KG.

If we think of V N (·) as a utility function, or as a measure of the amount of
“knowledge” contained in a state, we see from (14) that the KG policy chooses its
decisions in the direction of steepest expected ascent of this measure. This is the
reason behind the name knowledge-gradient policy. One may also view it as a single-
step look-ahead policy.

4.2. Computation. It was already known in [16] that an exact and computa-
tionally tractable expression exists for XKG. We present it here.

For each x ∈ {1, . . . ,M} define a function ζx : S 	→ [0,∞) by

(16) ζx(s) := −
∣∣∣∣μx − maxx′ �=x μx′

σ̃(βx)

∣∣∣∣ .
Except for the sign, ζx(Sn) is the minimum distance, in terms of the number of
standard deviations σ̃(βn

x ), that a measurement of alternative x must alter μn+1
x from

its premeasurement value of μn
x to make arg maxx′ μn+1

x′ �= arg maxx′ μn
x′—that is, to
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change the identity of the alternative with the largest conditional expected value. In
addition, define the function f : R 	→ R as

(17) f(z) := zΦ(z) + ϕ(z),

where Φ(z) is the normal cumulative distribution function and ϕ(z) is the normal
probability density function. Then the following theorem provides an efficient way to
compute KG’s decisions. The proof may be found in Appendix A.

Theorem 4.1. For every s = (μ, β) ∈ S, we have

QN−1(s, x) = max
x′

μx′ + σ̃(βx)f(ζx(s)),(18)

XKG(s) ∈ arg max
x∈{1,...,M}

σ̃(βx)f(ζx(s))(19)

with ties broken by choosing the alternative with the smallest index.
The term QN−1(s, x) − maxx′ μx′ = σ̃(βx)f(ζx(s)) is in some sense the expected

value of the information that would be obtained by measuring alternative x and is
sometimes called the “expected value of information,” or EVI, e.g., in [12] and [10].

Computation of the KG policy via (19) scales linearly with the number of alterna-
tives M . This compares well with other policies that might be used on this problem.
To compute the KG policy at time n, we must first find the largest and second largest
μn
x across all alternatives x, which will be used to compute ζnx := ζx(Sn). This may

be implemented either by an initial pass through the alternatives at each time pe-
riod, or by storing and updating the two values across time periods. Once we have
the largest and second largest μn

x , we iterate through the alternatives, calculating
σ̃(βn

x )f(ζnx ) for each one and returning the alternative with the largest value for this
expression. This iteration may be streamlined by recomputing the expression only for
those alternatives that changed ζnx or βn

x from the previous iteration.
The following remark, which is an easily obtained consequence of Theorems 1

and 2 in [16] and may also be obtained directly from (18), may also be used to
accelerate the computation of the KG policy by eliminating some alternatives from
consideration. It is also useful for proving later results. It states that if an alterna-
tive dominates another in both mean and variance, then of the two, KG prefers the
dominating alternative.

Remark 4.2. For every s = (μ, β) ∈ S such that μj ≥ μi and βj ≤ βi we have
QN−1(s, j) ≥ QN−1(s, i).

Finally, during computation, we may also use the following remark to eliminate
some alternatives from consideration, again improving the speed with which we may
compute the KG policy.

Remark 4.3. Take n = N−1 in Corollary 3.1. If βj = ∞ for some j ∈ {1, . . . ,M}
(that is, if the predictive distribution N (μj , 1/βj) for Yj is a point mass), then
QN−1(S, i) ≥ QN−1(S, j) for every i ∈ {1, . . . ,M}.

Thus, KG will never measure an alternative with zero variance unless every al-
ternative has zero variance. Corollary 3.1 shows that the optimal policy shares this
behavior of preferring not to measure any alternative whose true value is known per-
fectly.

4.3. Behavior. KG balances two considerations when it chooses its measure-
ment decisions. First, it prefers to measure those alternatives about which compara-
tively little is known. These alternatives x are the ones whose predictive distributions
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have large variance (σn
x )2 or, equivalently, have small precision βn

x . Thus, we have
that if KG prefers to measure some alternative i over another alternative j, then it
would still prefer to measure alternative i over j if the predictive variance of i were
increased.

Second, KG prefers to measure alternatives x with |μn
x − maxx′ �=x μ

n
x′ | close

to 0. We call −|μn
x − maxx′ �=x μ

n
x′ | the unnormalized influence and ζnx = −|μn

x −
maxx′ �=x μ

n
x′ |/σ̃(βn

x ) the normalized influence, or simply the influence, of alternative
x, where σ̃(βn

x ) is understood as a normalization term because predictions for differ-
ent alternatives have different variances and comparison does not make sense unless
we standardize these differences. Measurements of alternatives with large influence
are more likely to cause a change in the optimal implementation decision; that is, to
cause arg maxx′ μn

x′ �= arg maxx′ μn+1
x′ . KG’s preference for small predictive precision

and large influence are formalized in Propositions 4.1 and 4.2, but first we calculate
the derivative of f , as defined in (17), in a lemma.

Lemma 4.1. We have f ′(z) = Φ(z) ≥ 0 for every z ∈ R.

Proof. First note that d
dz e

−z2/2 = −ze−z2/2, showing that ϕ′(z) = −zϕ(z). From
this we see that f has nonnegative derivative f ′(z) = Φ(z) + zϕ(z) − zϕ(z) = Φ(z),
which completes the proof.

Proposition 4.1. Let states s = (μ, β) ∈ S, s′ = (μ′, β′) ∈ S and alternatives
i, j ∈ {1, . . . ,M} satisfy the following criteria: ζi(s

′) > ζi(s), ζj(s
′) = ζj(s), β

′
i < βi,

and β′
j = βj. If QN−1(s, i) > QN−1(s, j), then QN−1(s′, i) > QN−1(s′, j).

Proof. First, σ̃(β′
i) ≥ σ̃(βi) by Remark 3.1 and f(ζi(s

′)) ≥ f(ζi(s)) by Lemma 4.1.
By (18), QN−1(s′, i) > QN−1(s, i). Also, the equalities σ̃(β′

j) = σ̃(βj) and f(ζj(s
′)) =

f(ζj(s)) imply through (18) that QN−1(s′, j) = QN−1(s, j). Thus, if QN−1(s, i) >
QN−1(s, j), then QN−1(s′, i) ≥ QN−1(s, i) > QN−1(s, j) = QN−1(s′, j).

Proposition 4.2. If alternative i and state s = (μ, β) are such that ζi(s) ≥ ζj(s)
and βi < βj for every alternative j �= i, then XKG(s) = i.

Proof. Let j be an alternative different from i. Then σ̃(βi) > σ̃(βj) by Remark 3.1
and f(ζi(s)) ≥ f(ζj(s)) by Lemma 4.1. This implies that QN−1(s, i) > QN−1(s, j) by
Proposition 4.1. Since this is true for all j �= i, we have that i = arg maxj Q

N−1(s, j) =

XKG(s) where the arg max is unique.
It is also interesting to note that increasing the predictive mean of a single al-

ternative usually, but not universally, encourages KG to measure it. Thus, having
a large predictive mean is similar, but not identical, to having a large unnormalized
influence. We formalize this in the following proposition.

Proposition 4.3. If KG prefers alternative i in state (μ, β), then it also prefers
the same alternative i in state (μ + aei, β) for all positive real numbers a such that
μi + a ≤ maxx μx, i.e., for 0 ≤ a ≤ −μi + maxx μx.

We leave the proof until Appendix A.

5. Asymptotic optimality. In this section we show that the KG policy is
asymptotically optimal in the limit as the number of measurements N grows large.
This means that, given the opportunity to measure infinitely often, KG will discover
which alternative is best. In some sense, this is a convergence result because it shows
that the policy’s estimate of which alternative is best will converge to the alternative
that is truly best.

The KG policy is not alone in possessing this property. Indeed, the following
well-known policies are all asymptotically optimal: the equal-allocation policy which
distributes its measurements in a round-robin fashion equally among the alternatives;
the uniform exploration policy which randomly chooses its measurements with equal
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probability across the alternatives; and the Boltzmann exploration policy discussed
in section 8 which randomly chooses its measurements according to exponentially
weighted probabilities.

These policies differ from KG in that they explore for exploration’s sake and for
the long-term benefit it provides, while KG is purely myopic. Moreover, we argue that
KG’s asymptotic optimality is notable exactly because the policy is entirely myopic,
maximizing its single-period expected reward without regard for the long-term. This
is not generally the case with myopic policies for other problems. That a myopic
policy is also optimal in the long-term shows that this ranking and selection problem
has a special structure, and it foreshadows what is further suggested by our numerical
experiments: that this myopic policy, KG, performs quite well in many cases which
are neither myopic nor asymptotic.

In addition, one policy, interval estimation, performs very well in our numerical
experiments but is not asymptotically optimal as in some cases it “sticks,” measuring
one alternative only and obtaining its true value perfectly without learning about the
others [19]. Indeed, one can construct cases in which this policy’s performance is
arbitrarily bad compared to any asymptotically optimal policy. Although a policy’s
asymptotic optimality is not evidence of quality by itself, its absence should raise
concern among those who might use a policy lacking it. Finally, a natural question is
whether other policies, such as those in the OCBA family and those proposed in [12],
are asymptotically optimal. This question is currently open as these other policies are
more complex and require more care during analysis than does KG. Nevertheless, we
believe that the proof techniques applied here may be extended to show that many
other Bayesian look-ahead policies are also asymptotically optimal.

To show that KG is asymptotically optimal, we begin by showing in Proposi-
tion 5.1 that the asymptotic value of a policy is well defined and bounded above by
the value E maxx Yx of learning every alternative exactly. Then we show in Propo-
sition 5.2 that this value is achieved by any stationary policy that measures every
alternative infinitely often. Thus, any stationary policy that samples every alterna-
tive infinitely often is asymptotically optimal. Finally, we show in Theorem 5.1 that
KG is asymptotically optimal. The proof centers on the notion that, as the number of
times an alternative is measured increases, the variance of the value of that alterna-
tive shrinks toward 0. Eventually, that variance will be so low that KG will prefer to
measure another alternative. This argument is used to show that KG samples every
alternative infinitely often and thus is asymptotically optimal.

Since we will be varying the number N of measurements allowed, we use the nota-
tion V 0( · ;N) to denote the value function at time 0 when the problem’s terminal time
is N . We then define the asymptotic value function V ( · ;∞) by the limit V (s;∞) :=
limN→∞ V 0(s;N) for s ∈ S. Similarly, we denote the asymptotic value function for
stationary policy π by V π( · ;∞) and define it by V π(s;∞) := limN→∞ V π,0(s;N) for
s ∈ S. Proposition 5.1 shows that both limits exist.

If V π(s;∞) is equal to V (s;∞) for every s ∈ S, then π is said to be asymptotically
optimal. In particular, if a stationary policy π achieves the upper bound U( · ) on
V ( · ;∞) shown in Proposition 5.1, then π must be asymptotically optimal. We will
use this later to show that KG is asymptotically optimal. The proof of Proposition 5.1
is found in Appendix A.

Proposition 5.1. Let s ∈ S. Then the limit V (s;∞) exists and is bounded above
by

(20) U(s) := E

[
max

x
Yx | S0 = s

]
< ∞,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2422 P. I. FRAZIER, W. B. POWELL, AND S. DAYANIK

where we recall that {Yx}x∈{1,...,M} are independent and Yx ∼ N (μ0
x, (β

0
x)−1). Fur-

thermore, V π(s;∞) exists and is finite for every stationary policy π.

For any finite terminal time N we define the random variable ηNx as the number
of times that alternative x is measured up to but not including the terminal time N .
We also define η∞x as the limit of the ηNx ; namely,

ηNx :=

N∑
k=1

1{xk=x} and η∞x := lim
N→∞

ηNx .

The limit η∞x exists because ηNx is nondecreasing in N a.s. Note that we allow the
limit η∞x to be infinite.

Proposition 5.2 formalizes the idea that if we measure every alternative infinitely
often, then we eventually learn the true value of every alternative. This implies
asymptotic optimality. We then use Proposition 5.2 in the proof of Theorem 5.1
to show that KG is asymptotically optimal. The proofs for both Theorem 5.1 and
Proposition 5.2 are found in Appendix A.

Proposition 5.2. If π is a stationary policy under which η∞x = ∞ a.s. for every
x, then π is asymptotically optimal.

Theorem 5.1. The KG policy is asymptotically optimal and has value U(S0).

6. Bound on suboptimality. We have shown that KG is optimal when N = 1
and in the limit as N → ∞. In this section we address the range of N between these
extremes by bounding KG’s suboptimality in this region. This bound will be tight
for small N and will grow as N increases.

We begin with a theorem that implies our bound as a corollary. This theorem
shows that there is a limit on how much we may learn through any single measurement.

Theorem 6.1. Let s = (μ, β) ∈ S and c = (2π)−1/2 maxx σ̃(βx). Then

V n(s) ≤ V N−1(s) + c(N − n− 1).

The proof is found in Appendix A. We combine this result with Theorem 3.1 to
bound KG’s suboptimality. Here, V KG,n(s) is the value of the KG policy at time n
when Sn = s.

Corollary 6.1. Let s = (μ, β) ∈ S and c = (2π)−1/2 maxx σ̃(βx). Then

V n(s) − V KG,n(s) ≤ c(N − n− 1).

Proof. By Remark 4.1, we have V N−1(s) = V KG,N−1(s). From Theorem 3.1
we have V KG,N−1(s) ≤ V KG,n(s). Substituting the inequality V N−1(s) ≤ V KG,n(s)
into Theorem 6.1 shows the corollary.

7. Optimality for finite horizon special cases. We saw in Remark 4.1 that
KG is optimal when N = 1. We will show that KG is optimal in two other special
cases: first, when there are only two alternatives to measure; second, when the mea-
surements are free from noise, (σε)2 = 0, and when the parameters of the time 0 prior
can be ordered by μ0

1 ≥ μ0
2 ≥ · · · ≥ μ0

M and σ0
11 ≥ σ0

22 ≥ · · · ≥ σ0
MM . Before showing

optimality under these conditions, we first define and discuss a property called the KG
persistence property. This property is useful because it provides a sufficient condition
for optimality.
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7.1. Persistence of the knowledge-gradient policy. Proofs of the optimality
of the KG policy in these special cases is based on the KG persistence property. A
problem setting is said to have the KG persistence property if, operating the problem
under some policy other than KG, an alternative preferred by KG will remain preferred
until the alternative is measured. Below, in Theorem 7.1, we show that if a problem
setting has the KG persistence property, then KG is optimal in that problem setting.
Before stating this theorem, we formally define the KG persistence property and an
associated term, “covering of the future.”

Definition 7.1. A sequence of subsets of S, {Sn}Nn=k, is called a covering of
the future from k if T (s, x, Zn+1) ∈ S

n+1 a.s. for every s ∈ S
n, x ∈ {1, . . . ,M}, and

n ∈ {k, . . . , N − 1}.
Definition 7.2. We say that the KG persistence property holds on a covering

{S
n}Nn=k of the future from k if XKG(T (s, x, Zn+1)) = XKG(s) a.s. for every s ∈ S

n,

x �= XKG(s), and n ∈ {k, . . . , N − 1}.
This KG persistence property gives us a sufficient condition for the optimality of

the KG policy, as stated in the following theorem.
Theorem 7.1. If the KG persistence property holds on a covering {Sn}Nn=k of the

future from k for some k ∈ {0 . . . N − 1}, then V KG,k(s) = V k(s) for every s ∈ S
k.

We leave the proof until Appendix A, but we give a sketch here. Consider a
time n < N − 1 and the alternative that KG prefers. If the problem setting has
the KG persistence property, then, even if we do not measure that alternative now,
KG will continue to prefer it until we reach the final measurement N − 1. At this
measurement, KG is optimal by construction and so it is now provably optimal to
measure this persistent alternative. Thus, there exists an optimal policy that measures
the persistent alternative a.s., and by the temporal symmetry in the model, there
exists an optimal policy that measures the persistent alternative immediately at time
n. This argument is used with induction to show that there exists an optimal policy
making the same measurements as KG.

7.2. Optimality for two alternatives. We use the KG persistence principle
to show that KG is optimal when there are exactly two alternatives to consider, i.e.,
M = 2. In this case we will see that the optimal policy is one that, at each decision
point, measures the alternative with the largest variance. This policy is actually
deterministic, and it was shown in [15] that this policy is optimal among the class of
deterministic policies. Theorem 7.2 extends this result to show that this same policy
is also optimal among the class of fully sequential policies. It is not generally true that
the best deterministic policy is also as good as or better than every sequential policy,
but Theorem 7.2 shows that this is exactly the case for this particular problem.

We will see that the policy of measuring the alternative with the largest variance is
optimal because knowing the correct implementation decision is the same as knowing
the true sign of Y1 − Y2. Each measurement measures only one of Y1 or Y2, and an
equal reduction in variance for Y1 or Y2 contributes equally to the overall reduction in
variance of Y1 − Y2, regardless of which expected value is bigger. Thus, the best way
to learn about the difference between points Y1 − Y2 is to measure that point about
which the least is known.

To show that KG is optimal when M = 2, we need to show that KG persistence
holds when M = 2 and then refer to Theorem 7.1.

Lemma 7.1. If M = 2, then XKG(s) ∈ arg minx βx for each s = (μ, β) ∈ S with
ties broken by choosing the alternative with the smaller index.

Proof. By (19) from Theorem 4.1, it is enough to show equality between the sets
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arg maxx σ̃(βx)f(ζx(s)) and arg minx βx. When M = 2, ζx(s) = −|μ1 − μ2|/σ̃(βx),
so arg maxx σ̃(βx)f(ζx(s)) = arg maxx σ̃(βx)f (−|μ1 − μ2|/σ̃(βx)). The function σ̃ is
strictly decreasing by Remark 3.1. This fact will be used on its own, and it also implies
that −|μ1−μ2|/σ̃(βx) is a decreasing function of βx. The function f is nondecreasing
by Lemma 4.1, so the function βx 	→ f (−|μ1 − μ2|/σ̃(βx)) is the composition of a
nondecreasing function with a nonincreasing function and is thus itself nonincreasing.
Thus, the function βx 	→ σ̃(βx)f (−|μ1 − μ2|/σ̃(βx)) is the product of a strictly de-
creasing function with a nonincreasing function and is thus itself strictly decreasing.
This implies that arg maxx σ̃(βx)f (−|μ1 − μ2|/σ̃(βx)) = arg minx βx.

Theorem 7.2. If M = 2, then KG is optimal.
Proof. Let S

n = S for all n, and note that {Sn}Nn=0 is a covering of the future
from 0. We will show that the KG persistence property holds on {Sn}Nn=0.

Let n ∈ {0, . . . , N − 1} and s = (μ, β) ∈ S. First consider the case when β1 ≤ β2.
By Lemma 7.1, XKG(s) = 1. The precision component of T (s, 2, Zn+1) is (β1, β2+βε).
Since β1 ≤ β2 ≤ β2 + βε and by Lemma 7.1, XKG(T (s, 2, Zn+1)) = 1 a.s.

Now consider the case when β1 > β2. By Lemma 7.1, XKG(s) = 2. The precision
component of T (s, 1, Zn+1) is (β1+βε, β2). Since β1+βε ≥ β1 > β2 and by Lemma 7.1,
XKG(T (s, 1, Zn+1)) = 2 a.s.

In both cases, x �= XKG(s) implies XKG(T (s, x, Zn+1)) = XKG(s) a.s., so KG
persistence holds. Then, by Theorem 7.1, V KG,0(s) = V 0(s) for every s ∈ S, and KG
is optimal.

This theorem is founded on the intuition that the policy that learns the most is
also the one that changes our beliefs the most. This has a comparison in other mea-
surement problems—for example, the problem in which we have a quadratic function
with known second derivative and we measure the first derivative to find the maxi-
mum of the function. In this case the optimal policy is also the one that maximizes
the variance of the change in our final belief with respect to our current belief. In
both cases we measure the change between our current and final beliefs by taking the
variance. In other problems the variance is likely not the right measure of change,
but the same intuition would apply with some other measure of change.

7.3. Optimality when the state space is ordered. The KG policy is also
optimal when there is no measurement noise, i.e., (σε)2 = 0, and when the components
of S0 may be ordered in such a way that we have μ0

1 ≥ · · · ≥ μ0
M together with

β0
1 ≤ · · · ≤ β0

M . In other words, the optimality result requires that we may order the
alternatives with increasing means while simultaneously ordering them with increasing
variances. With the assumption of no measurement noise, the problem is interesting
only if the number of alternatives M is larger than the measurement budget N .

We present this optimality result formally in the theorem below, but first, as these
conditions are particularly restrictive, we motivate them with an example. Consider
a problem in marketing research in which we have a collection of potential adver-
tising campaigns, some of which are more ambitious than others. The predictive
distributions for the value obtained from the ambitious campaigns have larger mean
but larger variance as well. We may test a few of these campaigns in test markets
before committing to one of them. We will assume that the number of test markets
allowed is smaller than the number of potential campaigns. If we are willing to make
two additional assumptions—that loss is linear and that test markets give us perfect
knowledge of the campaign’s true value—then the example meets the conditions of
the theorem. These additional assumptions would not be met perfectly satisfied in
reality, but it is not too unreasonable to imagine situations in which loss would be
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approximately linear, and in which the knowledge obtained from a test market would
be large enough that one would not wish to perform a second test market. With this
marketing application as an illustrative example, we expect that this sort of ordering
of means and variances may also occur in financial applications, or wherever greater
expected reward brings greater risk along with it.

Theorem 7.3. If (σε)2 = 0 and s = (μ, β) ∈ S is such that the implication

(βi �= ∞ and βj �= ∞ and βi < βj) =⇒ μi ≥ μj

holds for every i, j ∈ {1, . . . ,M}, then V 0(s) = V KG,0(s).
The full proof can be found in Appendix A, but the essential idea is that when

this ordering holds, the tension between exploration and exploitation is gone, and KG
will simply choose that alternative with the largest variance. This is because the al-
ternative with the largest variance is also the alternative with the largest mean among
those which are not yet perfectly known. This ordering by variances is persistent, as it
was in the M = 2 case. Thus, the KG persistence property holds and KG is optimal.

8. Computational experiments. We compared KG against other sampling
policies using Monte Carlo simulation on 100 randomly generated problems and found
that it performs competitively. In particular, KG performed best when measured by
average performance across all the problems, and the margin by which it outperformed
the best competing policies in favorable cases was significantly larger than the margin
by which it was outperformed in unfavorable cases. Its comparative performance
was particularly good when the measurement budget was not much larger than the
number of alternatives to measure, and we would argue that performing well in these
cases is particularly important.

The space of problems is parameterized by a number of measurements N , a num-
ber of alternatives M , an initial precision β0 ∈ (0,∞]M , an initial mean μ0 ∈ R

M , and
a measurement noise (σε)2 ∈ [0,∞). We chose a collection of 100 problems randomly
generated within this space according to the following distribution: M was integer-
valued between 2 and 100. N was chosen by first choosing M and then choosing a
ratio N/M uniformly from the set {1, 3, 10}. Each μx was uniformly distributed in
the interval [−1, 1], and each βx was independently chosen as 1 with probability .9
and 1000 with probability .1. The noise variance (σε)2 was set to 1 in all cases.

For each problem, we performed simulations in which true function values were
generated independently according to the prior. Rather than collecting the value
obtained by the policy in each simulation, we collected the opportunity cost realized,
where the opportunity cost is the difference in true value between the best option and
the option chosen by the policy. The difference in expected opportunity cost is the
same as the difference in policy value, but samples of opportunity cost have less error,
and this allowed us to obtain accurate estimates with fewer simulations. We ran 105

simulations for each policy.
We compared KG against seven other policies: the OCBA for linear loss of [18],

the LL(S) policy of [12], the interval estimation (IE) policy of [19], Boltzmann ex-
ploration (see, e.g., [28]), equal allocation, and exploitation. Several of these policies
required choosing one or more parameters, which we did by simulating several choices
on all 100 problems and taking the parameters whose resulting opportunity cost was
smallest when summed over all 100 problems. We briefly describe each policy and its
tuning.

• OCBA. This policy has three parameters: the number of alternatives to al-
locate to in each stage, m; the number of measurements to allocate to each
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alternative in the first stage, n0; and the number of measurements per chosen
alternative to allocate in each stage, τ . We set n0 to 0 because our prior
is informative and thus may be thought of as already providing the results
of a first stage. To calibrate m and τ , we ran initial experiments with 5000
samples each with settings of m = 1, τ ∈ {1, 2, 5, 10}, and also with τ = 1,
m ∈ {2, 5, 10}. We found that m = 1, τ = 1 performed best.

• LL(S) for known variance. The LL(S) policy allows normal measurement
errors with unknown variance and uses a normal-gamma prior for the un-
known mean and measurement precision. We adapted this policy to the
known-variance case by taking the limit as the gamma prior on the precision
becomes a point mass at the known variance. Details can be found in Ap-
pendix B. The policy has two parameters, n0 and τ . We set n0 to 0 as we did
with OCBA. We tested the values 1, 2, 3, 4, 5, 10 for τ on our collection of 100
problems with 5000 samples for each problem and found that τ = 1 worked
best for every problem. This is the value we used in comparison with KG.

• Interval estimation. IE is parameterized by zα/2. As [19] suggests that values
of 2, 2.5, or 3 often work best for zα/2, we tested values between 2 and 4 in
increments of .1 and found that zα/2 = 3.1 worked best. Although we found
IE worked very well when properly tuned, we also found it to be very sensitive
to the choice of tuning parameter.

• Boltzmann exploration. Boltzmann exploration chooses its measurements by

P {xn = x | Fn} =
exp(μn

x/T
n)∑M

x′=1
exp(μn

x′/Tn)
, where the policy is parameterized by a

decreasing sequence of “temperature” coefficients (Tn)N−1
n=0 . We tuned this

temperature sequence within the set of exponentially decreasing sequences
defined by Tn+1 = γTn for some constant γ ∈ (0, 1]. The set of all such
sequences is parameterized by γ and TN . We tested γ ∈ {.1, .5, .8, .9, 1} with
TN ∈ {.1, 1, 10} and found that γ = 1 performed best. We then tested the set
of possible TN between .1 and 10 with γ fixed to 1 and found that TN = .55
performed best.

• Equal allocation. The equal-allocation policy is xn ∈ arg minx β
n
x , since we

think of the prior as providing the results of some previous first-stage measure-
ments, and we interpret βn

x/β
ε as the number of measurements of alternative

x taken by time n. It requires no tuning.
• Exploitation. The exploitation policy is xn ∈ arg maxx μx. It requires no

tuning.

The work required to tune other policies highlights one practical advantage of KG
policy: it requires no tuning.

8.1. Results. On each of the 100 randomly generated problems, we took 105

samples of opportunity cost from every policy. The distribution of opportunity cost
is not normal, as it is positive a.s. and often equal to 0. We averaged groups of 500
samples to obtain approximately normal samples from which we estimated expected
opportunity cost as well as standard errors on these estimates. The difference in value
between KG and any other policy on any particular problem was then estimated as
the difference in sampled opportunity costs, with standard error equal to the square
root of the sum of the squared standard errors. The resulting standard errors of the
difference, reporting maximum and averaged values across the 100 problems, were
.0018 and .0007 for IE; .0018 and .0007 for OCBA; .0019 and .0007 for LL(S); .0020
and .0009 for Boltzmann exploration; .0024 and .0013 for equal allocation; and .0026
and .0021 for exploitation.
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Fig. 1. Histogram of the sampled difference in value for competing policies aggregated across
the 100 randomly generated problems.

We show in Figure 1 the sample estimates of V KG − V π aggregated across the
randomly generated problems for each of the competing policies π. Bars to the right of
0 indicate that KG outperformed the plotted policy on those problems, and bars to the
left indicate the converse. Note that the scale of the histograms in the right-hand plots
is much smaller than in the left-hand plots. The histograms show that Boltzmann
exploration, equal allocation, and exploitation policies were all outperformed by KG
in every problem setting tested, while IE, OCBA for linear loss, and the LL(S) policy
performed relatively better. Each of these three better competing policies performed
better than KG on some problems and were outperformed on others; however, the tail
to the right of 0 is larger than to the left. This indicates that the amount by which
KG outperformed the competing policies was significantly larger than the amount by
which it was outperformed.

We note a seeming discrepancy between our numerical work and that of Chick,
Branke, and Schmidt [10], who tested a variance-unknown version of the KG policy
called LL1. They found that LL1 performed well in small-sample settings, but poorly
elsewhere. In contrast, we found that KG, a very similar policy, performed quite
well overall. We believe that the difference lies in the stopping rule used. We simply
stopped our sampling policies after a fixed horizon N , but [10] drew many of its
conclusions from experiments using the expected opportunity cost Bonferonni (EOC
Bonf) stopping rule introduced in [2]. In experiments not pictured here we found that
KG also performed poorly with EOC Bonf stopping, but much better when it was
stopped using a stopping rule that we introduce now.

This new rule stops as soon as the expected myopic value of the next measurement,
as determined by QN−1(s, x) − maxx′ μx′ = σ̃(βx)f(ζx(s)), drops below a threshold
c. That is, the number of measurements N to take under this rule is defined by
N = inf{n ≥ 0 : σ̃(βn

x )f(ζx(Sn)) < c }. The threshold c should be interpreted as
the cost of one measurement. Since the expected marginal value of each subsequent
measurement decreases on average, it is reasonable to stop measuring as soon as the
marginal expected value of the next measurement drops below its cost. Replacing
EOC Bonf with this new stopping rule may improve the performance of the KG
sampling policy enough to make it competitive with LL(S) and other commonly used
policies in an adaptive stopping setting. Our initial experiments suggest that this may
be the case, but space limitations prevent a thorough discussion of the experimental
issues.
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9. Conclusion. The KG measurement policy, as first proposed in [16] and as
analyzed here, has several attractive features. Under the assumption of independent
normally distributed priors with normal sampling errors of common known variance,
we showed that the policy is optimal in both extremes of the number of measurements
allowed (N = 1 and N → ∞), as well as in other special cases, and has bounded sub-
optimality in the remaining cases. We showed numerically that it performs competi-
tively with, or significantly better than, several other sequential measurement policies
in a broad class of problem settings. In addition, KG is simple in concept, easy to
implement, fast to compute, and requires no tuning. This simplicity may make it
an attractive alternative to its more complex but similarly performing cousins, the
OCBA and the LL(S) policy.

One important limitation of the version of the policy discussed herein is its as-
sumption of common known variance, which often fails to be met in practice. To lift
this assumption, it is possible to place a normal-gamma prior on the unknown means
and variances, as was done in [12], and recompute the optimal single-step look ahead
policy. Indeed, if we begin with a noninformative normal-gamma prior for the true
mean Yx and unknown sampling variance βε

x of alternative x, and after sampling have
vectors of statistics (μ, σ̂2, n) where (μx, σ̂

2
x, nx) indicate the sample mean, sample

variance, and number of samples taken for alternative x, then a calculation similar to
that of Theorem 4.1 reveals that the corresponding KG policy is arg maxx σ̃xfnx−1(ζx),
where we must redefine σ̃x :=

√
σ̂2/nx(nx + 1), leave ζx defined as before, and de-

fine fn(z) := ν+z2

ν−1 ϕν(z) + zΦν(z), where ϕν and Φν are, respectively, the probability
density function and cumulative density function of the student-t distribution with
ν degrees of freedom. This provides a version of KG for the unknown-variance case.
This was derived earlier and independently in [10], and is discussed there in much
greater detail, together with a numerical analysis of its properties.

Additionally, the KG policy as described herein has used a fixed number of sam-
ples instead of an adaptive stopping rule, while [2] has shown that such rules generally
improve the efficiency of budgeted ranking and selection policies. Nevertheless, as im-
plied briefly in section 8 and as discussed in [10], one can certainly use an adaptive
stopping rule with the KG sampling policy. Future work is needed to assess the qual-
ity of such adaptively stopped policies, and to determine which stopping rules are
best to use with KG, but this is by no means an insurmountable obstacle.

Other limitations would seem to present more difficulty. The use of common
random numbers has proved immensely beneficial for simulation-based ranking and
selection. References [11] and [14] discuss Bayesian ranking and selection policies
taking advantage of common random numbers, as does [21] for the frequentist for-
mulation, and it may be possible to extend the KG approach along these lines as
well. Indeed, KG’s benefits may be overshadowed by its inability to leverage common
random numbers in simulation-based ranking and selection unless this extension can
be made. In addition, KG assumes the alternatives have a common measurement
cost, while in practice it may be more expensive or time consuming to measure some
alternatives than others. It may be possible to lift this restriction by dividing the
benefit of measurement by the cost so as to obtain a normalized quantity for compar-
ison (a benefit per unit cost), but it may also be that the OCBA approach is more
appropriate in such instances.

Despite these limitations, KG has great potential for application. As demon-
strated here, it should be considered a reasonable alternative to other measurement
policies for those applications that meet its assumptions of a fixed sampling budget
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and normally distributed errors with common known variance.

Appendix A. Proofs.

Proof of Proposition 3.2. We proceed by induction on n. For n = N − 1 and
s = (μ, β) we have

QN−1(s, x) = E
[
V N (T (s, x, ZN ))

]
= E

[(
μx + σ̃(βx)ZN

)
∨ max

x′ �=x
μx′

]

≥ μx ∨ max
x′ �=x

μx′ = V N (s),

where the inequality is justified by Jensen’s inequality and the convexity of the max
operator. Now we prove the induction step. For 0 ≤ n < N ,

Qn(s, x) = E
[
V n+1(T (s, x, Zn+1))

]
= E

[
max

x′∈{1,...,M}
Qn+1(T (s, x, Zn+1), x′)

]

≥ max
x′∈{1,...,M}

E
[
Qn+1(T (s, x, Zn+1), x′)

]
= max

x′∈{1,...,M}
E
[
V n+2(T (T (s, x, Zn+1), x′, Zn+2))

]
.(21)

In this equation both decisions x and x′ are fixed, so the state to which we arrive
when we measure x first and x′ second, T (T (s, x, Zn+1), x′, Zn+2), is equal in dis-
tribution to the state to which we arrive when we measure x′ first and x second,
T (T (s, x′, Zn+2), x, Zn+1). This allows us to exchange the time-order of the decisions
x and x′ in (21) to write

Qn(s, x) ≥ max
x′∈{1,...,M}

E
[
V n+2(T (T (s, x′, Zn+2), x, Zn+1))

]
= max

x′∈{1,...,M}
E
[
E
[
V n+2(T (T (s, x′, Zn+2), x, Zn+1)) | Zn+2

]]
= max

x′∈{1,...,M}
E
[
Qn+1(T (s, x′, Zn+2), x)

]
.

Then the induction hypothesis tells us that

Qn+1(T (s, x′, Zn+2), x) ≥ V n+2(T (s, x′, Zn+2)) a.s.,

allowing us to write

Qn(s, x) ≥ max
x′∈{1,...,M}

E
[
V n+2(T (s, x′, Zn+2))

]
= max

x′∈{1,...,M}
Qn+1(s, x′) = V n+1(s).

Proof of Theorem 3.1. We proceed by induction on n. Consider the base case,
which is n = N − 1. Fix s = (μ, β) ∈ S. Then V N (s) = maxx μx is convex in its
arguments, so we can employ Jensen’s inequality to write

V π,N−1(s) = E
[
V π,N (T (s,Xπ(s), ZN ))

]
≥ V π,N

(
E
[
T (s,Xπ(s), ZN )

])
= V π,N (μ, β + βεeXπ(s)) = V π,N (μ, β) = V π,N (s).

Now consider the induction step. For n < N − 1,

V π,n(s) = E
[
V π,n+1(T (s,Xπ(s), Zn+1))

]
≥ E

[
V π,n+2(T (s,Xπ(s), Zn+1))

]
by the induction hypothesis. Then, by the definition of V π,n+1 in terms of V π,n+2

from (10), we have V π,n(s) ≥ V π,n+1(s).
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Proof of Theorem 4.1. By (15), computing XKG(s) reduces to computing
QN−1(s, x) for each x ∈ {1, . . . ,M}. By definition (11) we have, for a generic state s
and standard normal random variable Z,

QN−1(s, x) = E
[
V N (T (s, x, Z))

]
= E

[
(μx + σ̃(βx)Z) ∨ max

x′ �=x
μx′

]
.(22)

This expectation is the expectation of the maximum of a constant and a normal
random variable, for which we have an analytical expression from [13]. Let a ∈ R be
an arbitrary constant and W ∼ N (b, c2) an arbitrary normal random variable. Then
[13] tells us that

(23) E [W ∨ a] = aΦ

(
a− b

c

)
+ bΦ

(
b− a

c

)
+ cϕ

(
a− b

c

)
,

which can be rewritten as

E [W ∨ a] = aΦ

(
a− b

c

)
+ b

(
1 − Φ

(
a− b

c

))
+ cϕ

(
a− b

c

)

= b + (a− b)Φ

(
a− b

c

)
+ cϕ

(
a− b

c

)

= b + c

[(
a− b

c

)
Φ

(
a− b

c

)
+ ϕ

(
a− b

c

)]
.

Fix x and consider two cases. First, consider the case that μx > maxx′ μx′ . This is
the case in which we measure an alternative that is uniquely the best according to
the prior. Then μx − maxx′ �=x μx′ is positive and (maxx′ �=x μx′ − μx)/σ̃(βx) = ζx(s).
Substitute ζx(s) for (a− b)/c and write (22) as

QN−1(s, x) = μx + σ̃(βx) [ζx(s)Φ(ζx(s)) + ϕ(ζx(s))] = μx + σ̃(βx)f(ζx(s)),

which can be rewritten in our case using μx = maxx′ μx′ as

QN−1(s, x) = max
x′

μx′ + σ̃(βx)f(ζx(s)).(24)

Now consider the case that μx ≤ maxx′ μx′ . We rewrite (23) again using the
substitution Φ(−z) = 1 − Φ(z) and also using the symmetric property of the normal
probability density function, ϕ(−z) = ϕ(z), as

E [Z ∨ a] = a + c

[(
b− a

c

)
Φ

(
b− a

c

)
+ ϕ

(
b− a

c

)]
.

In the case we are considering, μx−maxx′ �=x μx′ ≤ 0 and (μx−maxx′ �=x)/σ̃(βx)=ζx(s).
Substitute ζx(s) for (b− a)/c and write (22) as

QN−1(s, x) = max
x′ �=x

μx′ + σ̃(βx) [ζx(s)Φ(ζx(s)) + ϕ(ζx(s))]

= max
x′ �=x

μx′ + σ̃(βx)f(ζx(s)),
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which can be rewritten in our case using maxx′ �=x μx′ = maxx′ μx′ as

QN−1(s, x) = max
x′

μx′ + σ̃(βx)f(ζx(s)).(25)

In both cases the expression for QN−1(s, x) agrees with (18), and we use this expres-
sion to rewrite (15) as

XKG(s) ∈ arg max
x

max
x′

μx′ + σ̃(βx)f(ζx(s)) = arg max
x∈{1,...,M}

σ̃(βx)f(ζx(s)),

since maxx′ μx′ does not depend on x.

Proof of Proposition 4.3. By Theorem 4.1, KG prefers the alternative with
the largest value of σ̃(βx)f(ζx(S)). Fix S = (μ, β), and let a be as in the statement
of Proposition 4.3. Let i be the alternative preferred by KG, so

(26) i = arg max
x∈{1,...,M}

σ̃(βx)f(ζx(S)),

where we recall that we are breaking ties by choosing the smallest index. Note that
the theorem’s condition on a trivializes the case when μi = maxx μx because here the
range of a contains only the value 0, for which the theorem is obviously true. Thus,
without loss of generality we may assume μi < maxx μx, and let j ∈ arg maxx μx.
Then j �= i.

Let S′ = (μ + aei, β). We will first show for all alternatives x �= i that

(27) σ̃(βi)f(ζi(S
′)) ≥ σ̃(βx)f(ζx(S′)).

This will show that i ∈ arg maxx σ̃(βx)f(ζx(S′)). We will then show that the impli-
cation

(28) σ̃(βx)f(ζx(S)) < σ̃(βi)f(ζi(S)) =⇒ σ̃(βx)f(ζx(S′)) < σ̃(βi)f(ζi(S
′))

holds for all x �= i. This will suffice to show the proposition because if we choose any
x′ /∈ arg maxx σ̃(βx)f(ζx(S)), (26) will imply σ̃(βx′)f(ζx′(S)) < σ̃(βi)f(ζi(S)). The
implication (28) will then imply that σ̃(βx′)f(ζx′(S′)) < σ̃(βi)f(ζi(S

′)) and, moreover,
that x′ /∈ arg maxx σ̃(βx)f(ζx(S′)). Taking the contrapositive of the statement

x′ /∈ arg max
x

σ̃(βx)f(ζx(S)) =⇒ x′ /∈ arg max
x

σ̃(βx)f(ζx(S′))

reveals that

x′ ∈ arg max
x

σ̃(βx)f(ζx(S′)) =⇒ x′ ∈ arg max
x

σ̃(βx)f(ζx(S)).

By this argument, (28) implies that arg maxx σ̃(βx)f(ζx(S′)) ⊆ arg maxx σ̃(βx) ·
f(ζx(S)). Therefore i is the element of arg maxx σ̃(βx)f(ζx(S)) with the smallest
index, and thus i is the alternative that KG prefers in state S′.

We will show (27) and (28) by treating three cases separately, noting in general
that ζi(μ, β) ≤ ζi(μ + aei, β). The first case is when x �= i, j. Then

ζx(S′) = ζx(μ + aei, β) = ζx(μ, β) = ζx(S).
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Thus, (27) is true because

σ̃(βi)f(ζi(S
′)) ≥ σ̃(βi)f(ζi(S)) ≥ σ̃(βx)f(ζx(S)) = σ̃(βx)f(ζx(S′)),

and (28) is true because if σ̃(βx)f(ζx(S)) < σ̃(βi)f(ζi(S)), then

σ̃(βx)f(ζx(S′)) = σ̃(βx)f(ζx(S)) < σ̃(βi)f(ζi(S)) ≤ σ̃(βi)f(ζi(S
′)).

The second case is when x = j and μi + a < maxx′ �=j μx′ . Then again ζj(S
′) =

ζj(S) because j �= i, and both (27) and (28) hold by the same reasoning as in the first
case.

The third case is when x = j and μi + a ≥ maxx′ �=j μx′ . Then we have ζj(μ +

aei, β) =
−|μi+a−μj |

σ̃(βj)
. For x = j, KG’s preference of alternative i implies that βi ≤ βj .

Otherwise, by Remark 4.2 and because μj ≥ μi, KG would prefer alternative j. This
shows that

ζi(μ + aei, β) =
−|μi + a− μj |

σ̃(βi)
≥ −|μi + a− μj |

σ̃(βj)
= ζj(μ + aei, β).

This shows (27). To show (28), assume the antecedent of condition (28). Since
|μj − maxx′ �=j μx′ | ≤ |μj − μi| and σ̃(βj)f(ζj(S)) < σ̃(βi)f(ζi(S)), it must be that
σ̃(βj) < σ̃(βi) since otherwise j would have been KG’s choice in state S. Thus,

ζi(μ + aei, β) =
−|μi + a− μj |

σ̃(βi)
>

−|μi + a− μj |
σ̃(βj)

= ζj(μ + aei, β).

Proof of Proposition 5.1. We will show that V 0(S0;N) is a nondecreasing
function of N bounded from above by U(S0), which will imply that the limit V (S0;∞)
exists and is bounded as claimed. To show that V 0(S0;N) is nondecreasing in N ,
note that V 0(S0;N − 1) = V 1(S0;N), and thus

V 0(S0;N) − V 0(S0;N − 1) = V 0(S0;N) − V 1(S0;N).

This difference is positive by Corollary 3.2.
Now we show that V 0(S0;N) ≤ U(S0). For every N ≥ 1 and policy π,

E
π
[
max

x
μN
x

]
= E

π
[
max

x
E
π
N [Yx]

]
≤ E

π
[
E
π
N

[
max

x
Yx

]]

= E
π
[
max

x
Yx

]
= E

[
max

x
Yx

]
.

This value is independent of π and is equal to U(S0). Thus

V 0(S0;N) := sup
π

E
π
[
max

x
μN
x

]
≤ U(S0)

for every N ≥ 1. Taking the limit as N → ∞ shows V (S0;∞) ≤ U(S0).
Finally, we show that the limit V π(S0;∞) exists and is finite for every stationary

policy π. Fix a stationary policy π. Then Theorem 3.1 implies that V π,0(S0;N)
is nondecreasing in N , and V π,0(S0;N) is bounded by V 0(S0;N), which is itself
uniformly bounded in N by U(S0). Then V π(S0;∞) is the limit of a nondecreasing
bounded sequence. Hence, it exists.
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Proof of Proposition 5.2. We assumed in the formal model in section 3.1
that our measurement-noise variance (σε)2 is finite. This implies via the strong law
of large numbers that the sequence of posterior predictive means μN

x converges as
limN→∞ μN

x = Yx a.s. for each x = 1, . . . ,M . Thus limN→∞ maxx μ
N
x exists a.s. and

in probability. We will show next that the sequence
(
maxx μ

N
x

)
N≥1

is uniformly inte-

grable, and then convergence in probability together with uniform integrability implies
convergence in L1 (see, e.g., [20, Theorem 3.12]). Convergence in L1 of maxx μ

N
x as

N → ∞ implies

V π(S0;∞) = lim
N→∞

E
π
[
max

x
μN
x

]
= E

π
[

lim
N→∞

max
x

μN
x

]
= E

π
[
max

x
Yx

]
= U(S0).

Proposition 5.1 showed that U(S0) ≥ V (S0;∞), so V π(S0;∞) = V (S0;∞) and π
must be asymptotically optimal.

To complete the proof we must show uniform integrability of the sequence(
maxx μ

N
x

)
N≥1

. For every fixed K we have

E

[∣∣∣max
x

μN
x

∣∣∣ 1{|maxx μN
x |≥K}

]
≤ E

[
max

x

∣∣μN
x

∣∣ 1{maxx|μN
x |≥K}

]
= E

[
max

x
|EN [Yx]| 1{maxx|EN [Yx]|≥K}

]
≤ E

[
max

x
EN [|Yx|] 1{maxx EN [|Yx|]≥K}

]
≤ E

[
EN

[
max

x
|Yx|

]
1{EN [maxx|Yx|]≥K}

]
= E

[
EN

[
max

x
|Yx| 1{EN [maxx|Yx|]≥K}

]]
= E

[
max

x
|Yx| 1{EN [maxx|Yx|]≥K}

]
.

We assumed in the formal model in section 3.1 that maxx |Yx| was integrable. This
implies via Markov’s inequality that

P

{
EN

[
max

x
|Yx|

]
≥ K

}
≤ E [EN [maxx |Yx|]]

K
=

E [maxx |Yx|]
K

.

This is bounded uniformly in N , and the bound goes to zero as K → ∞.

Proof of Theorem 5.1. First note that KG is stationary. We will show that
limN→∞ ηNx = ∞ a.s. for all x under KG, and then Proposition 5.2 will complete the
proof.

First we show that, for each x, {μn
x}

∞
n=0 is a uniformly integrable martingale with

respect to the filtration F and hence converges. μn
x is defined by μn

x := E [Yx | Fn]
and thus is Fn-measurable and, by the tower property of conditional expectation,
satisfies the martingale identity. Yx is a normal random variable with finite variance.
Thus, Yx ∈ L2 ⊂ L1, and by the Doob uniform integrability lemma [20, Lemma 5.5],
the collection of conditional expectations {μn

x}n is uniformly integrable (and hence
each μn

x is integrable). Thus, {μn
x}n is a uniformly integrable martingale and hence

converges a.s. to an integrable random variable μ∞
x . In addition, limn→∞ βn

x
a.s.
=

β0
x + βεη∞x for each x.

By the computation performed in Theorem 4.1, the Q-factors for each alternative
x are continuous functions of their arguments (μ, β), and, hence,

lim
n→∞

QN−1(Sn;x)
a.s.
= max

x′
μ∞
x′ + σ̃(β∞

x )f

(
μ∞
x − maxx′′ �=x μ

∞
x′′

σ̃(β∞
x )

)
.
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Define Ω0 to be the almost sure event on which this convergence holds, and define the
event Hx to be Hx := {ω : η∞x (ω) < ∞}. Then,

lim
n→∞

QN−1(Sn(ω);x) > max
x′

μ∞
x′ (ω) for all ω ∈ Hx ∩ Ω0,(29)

lim
n→∞

QN−1(Sn(ω);x) = max
x′

μ∞
x′ (ω) for all ω ∈ Hc

x ∩ Ω0.(30)

Let A be any subset of {1, . . . ,M}, and define the event HA to be HA :=
(∩x∈AHx)∩(∩x∈AcHc

x). We will show that, if A �= ∅, then P(HA) = 0. This will prove
the theorem because Ω = ∪A⊆{1,...,M}HA, so if we know that A �= ∅ =⇒ P(HA) = 0,
then 1 = P(H∅) = P{limn→∞ ηnx = ∞ for all x}.

Fix A nonempty and suppose for contradiction that HA∩Ω0 is nonempty so that
we may choose ω ∈ HA ∩ Ω0 to be an element of this set. By (29) and (30), for all
x ∈ A and all y ∈ Ac,

lim
n→∞

QN−1(Sn(ω);x) > lim
n→∞

QN−1(Sn(ω); y),

and there exists a finite number Kxy such that, for all n > Kxy,

QN−1(Sn(ω);x) > QN−1(Sn(ω); y).

Let K := maxx∈A,y∈Ac Kxy if Ac is nonempty, and let K := 1 if Ac is empty. Then
K is finite and for all n > K and all x ∈ A and y ∈ Ac,

QN−1(Sn(ω);x) > QN−1(Sn(ω); y).

Therefore, KG distributes all measurements n > K only to alternatives in the set A,
and

∑
x∈A η∞x (ω) = ∞. This is a contradiction because x ∈ A implies ω ∈ Hx, which

implies η∞x (ω) < ∞.
Thus, P(H∅ ∩ Ω0) = 0, and since P(Ω0) = 1, P(H∅) = 0.

Proof of Theorem 6.1. Note that ϕ(0) = (2π)−1/2, where ϕ is the normal
probability density function. We will use this throughout. We induct backward over
n. First, when n = N − 1, the theorem is trivially true with equality. Now, under the
assumption that the theorem is true for some n + 1,

V n(s) = max
x

E
[
V n+1(T (s, x, Zn+1))

]
≤ max

x
E

[
V N−1(T (s, x, Zn+1)) + ϕ(0)(N − n− 2) max

x
σ̃
(
βx′ + βε1{x=x′}

)]
.

Then, since σ̃ is a decreasing function and βn
x′ ≤ βn

x′ + βε1{x=x′},

V n(s) ≤ max
x

E

[
V N−1(T (s, x, Zn+1)) + ϕ(0)(N − n− 2) max

x′
σ̃(βx′)

]
.

Since the last term is a constant and does not depend on x, we may move it outside
the maximum and expectation operators, giving

(31) V n(s) ≤ max
x

E
[
V N−1(T (s, x, Zn+1))

]
+ ϕ(0)(N − n− 2) max

x′
σ̃(βx′).

We will rewrite the first term on the right-hand side of this inequality as a maximum
over a set of Q-factors using the definition of V N−1 in terms of QN−1, but before
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making this substitution, let us bound QN−1. We rewrite the expression (24) for
QN−1 as QN−1(s, x′) = maxx′′ μx′′ +σ̃(βx′)f(ζx′) = V N (s)+σ̃(βx′)f(ζx′). Lemma 4.1
tells us that f is nondecreasing, so ζx′ ≤ 0 implies that f(ζx′) ≤ f(0) = ϕ(0). Thus,

QN−1(s, x′) ≤ V N (s) + ϕ(0)σ̃(βx′).

Using this and the definition of the value function in terms of the Q-factors from (10)
and (11), we have

V N−1(T (s, x, Zn+1)) = max
x′

QN−1(T (s, x, Zn+1), x′)

≤ max
x′

V N (T (s, x, Zn+1)) + ϕ(0)σ̃
(
βx′ + βε1{x=x′}

)
= V N (T (s, x, Zn+1)) + ϕ(0) max

x′
σ̃
(
βx′ + βε1{x=x′}

)
≤ V N (T (s, x, Zn+1)) + ϕ(0) max

x′
σ̃(βx′).

Combining this bound with (31) and moving the σ̃(βx) outside the maximization and
expectation operators, we obtain

V n(s) ≤ max
x

E

[
V N (T (s, x, Zn+1)) + ϕ(0) max

x′
σ̃(βn

x′)
]

+ ϕ(0)(N − n− 2) max
x′

σ̃(βx′)

= max
x

E
[
V N (T (s, x, Zn+1))

]
+ ϕ(0)(N − n− 1) max

x′
σ̃(βx′)

= V N−1(s) + ϕ(0)(N − n− 1) max
x′

σ̃(βx′),

where in the last step we used the definition of V N in terms of V N−1 from (10).

Proof of Theorem 7.1. The proof is by induction backward on k. The theorem
holds for the base case, k = N − 1, by Remark 4.1. Now let k < N − 1. Let π∗ be an
optimal policy, with decision function X∗k at time k. Let s = (μ, β) ∈ S

k. Then

(32) V k(s) = E
[
V k+1(T (s,X∗k(s), Zk+1))

]
= E

[
V KG,k+1(T (s,X∗k(s), Zk+1))

]
by the induction hypothesis, since {Sn}Nn=k+1 is a covering of the future from k + 1

on which KG persistence holds, and T (s,X∗k(s), Zk+1) ∈ S
k+1 a.s.

Consider two cases. In the first case, suppose X∗k(s) = XKG(s). By (32),

V k(s) = E
[
V KG,k+1(T (s,XKG(s), Zk+1))

]
= V KG,k(s).

In the second case, suppose X∗k(s) �= XKG(s). Then, abbreviating the random
state at time k + 1 under the optimal policy by Sk+1 = T (s,X∗k(s), Zk+1),

V k(s) = E
[
V KG,k+2(T (Sk+1, XKG(Sk+1), Zk+2))

]
= E

[
V KG,k+2(T (Sk+1, XKG(s), Zk+2))

]
,(33)

since XKG(s) = XKG(Sk+1) a.s. by the KG persistence property. Let Sk+2 =
T (Sk+1, XKG(s), Zk+2). Then V k(s) = E

[
V KG,k+2(Sk+2)

]
.

Note that Sk+2 is the state to which we arrive when we measure X∗k(s) at time
k and XKG(s) at time k + 1. Let Ex = ex(ex)T be a matrix of all zeros except for
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a single 1 at row x, column x, and let
d
= denote equality in distribution. Then the

definition (8) of the transition function T and XKG(s) �= X∗,k(s) imply

Sk+2 = T (Sk+1, XKG(s), Zk+2)

= T (T (s,X∗k(s), Zk+1), XKG(s), Zk+2)

= μ + σ̃(βXKG(s))Z
k+1 + σ̃(βX∗,k(s))Z

k+2 + βεEXKG(s) + βεEX∗,k(s)

d
= μ + σ̃(βXKG(s))Z

k+2 + σ̃(βX∗,k(s))Z
k+1 + βεEXKG(s) + βεEX∗,k(s)

= T (T (s,XKG(s), Zk+1), X∗k(s), Zk+2).

Thus, we have that V k(s) = E
[
V KG,k+2(Sk+2)

]
equals

E
[
V KG,k+2(T (T (s,XKG(s), Zk+1), X∗k(s), Zk+2))

]
.

This quantity is the value of making decisions XKG(s) at time k, X∗k(s) at time k+1,
and then following KG afterward. This value must be less than the value of making the
same decision XKG(s) at time k and following the optimal policy afterward. Thus,
V k(s) ≤ E

[
V k+1(T (s,XKG(s), Zk+1))

]
. Now, T (s,XKG(s), Zn+1) ∈ S

n+1 a.s., so
by the induction hypothesis we may replace the optimal value function with the KG
value function when operating on this state. This allows us to write

V k(s) ≤ E
[
V KG,k+1(T (s,XKG(s), Zk+1))

]
= V KG,k(s).

Finally, V k(s) ≥ V KG,k(s) implies V k(s) = V KG,k(s).

Proof of Theorem 7.3. For n ∈ {0, . . . , N − 1}, define S
n to be the set of all

s = (μ, β) ∈ S satisfying

(34) (βi �= ∞ and βj �= ∞ and βi < βj) =⇒ μi ≥ μj

for all i, j ∈ {1, . . . ,M}. Note that the sets S
n are identical for all n. We will show

that {S
n} is a covering of the future from 0.

Let n ∈ {0, . . . , N − 2}, x ∈ {1, . . . ,M}, s ∈ S
n, and Sn = s a.s. Consider

Sn+1 := T (Sn, x, Zn+1). Let i, j ∈ {1, . . . ,M} meet the conditions of the implication
(34) for Sn+1, so βn+1

i �= ∞ and βn+1
j �= ∞ and βn+1

i < βn+1
j . We will show that

μn
i ≥ μn

j , which will show that Sn+1 meets condition (34) and is in S
n+1.

First, βn ≤ βn+1 componentwise implies that βn
i �= ∞ and βn

j �= ∞. Also,

since (σε)2 = 0, βn+1
x = ∞, which implies that x �= i, j, and the measurement

between Sn and Sn+1 alters neither the i component nor the j component. Thus,
βn
i = βn+1

i < βn+1
j = βn

j . This shows that i, j meet the conditions of the implication

(34) for Sn as well as Sn+1. Thus, since Sn ∈ S
n, μn

i ≥ μn
j . Then, again because

x �= i, j implies that the means of the i and j components did not change from time n
to n+1, μn+1

i ≥ μn+1
j , showing that Sn+1 meets the condition (34), and Sn+1 ∈ S

n+1.
Thus, {S

n} is a covering of the future from 0.
Now we will show that KG is persistent on {Sn}. Let s ∈ S

n and Sn = s a.s.
Condition (34) together with Remarks 4.2 and 4.3 implies XKG(Sn) ∈ arg minx′ βn

x′

with ties broken by the smallest index. Let x �= XKG(Sn). We showed that Sn+1 :=
T (Sn, x, Zn+1) ∈ S

n+1 a.s. Thus, again by condition (34) and Remarks 4.2 and 4.3,
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XKG(Sn+1) ∈ arg minx′ βn+1
x′ . We use the state transition function for the case with

(σε) = 0, βn+1
x′ = βn

x′ + ∞1{x′=x}, and we consider two cases.
In the first case suppose βn

x′ < ∞ for some x′ �= x. Then, since βn+1
x = ∞, we

have βn+1
x′ = βn

x′ < βn+1
x . Thus, we may drop x from the argmin set as in

arg min
x′

βn+1
x′ = arg min

x′ �=x
βn+1
x′ = arg min

x′ �=x
βn
x .

XKG(Sn) is the element of this set with the smallest index, and since XKG(Sn+1)
is also defined to be the element of this set with the smallest index, XKG(Sn+1) =
XKG(Sn).

In the second case suppose βn
x′ = ∞ for all x′ �= x. Then, by XKG ∈ arg minx′ βn

x′ ,
and since XKG(Sn) �= x, we also have that βn

x = ∞. The state transition rule for β
implies that βn+1

x′ = ∞ for all x′. Thus, arg minx′ βn
x′ = {1, . . . ,M} = arg minx′ βn+1

x′ ,
and since the tie-breaking rule is fixed to choose the element with the smallest index,
XKG(Sn+1) = XKG(Sn).

In both cases KG is persistent on {Sn}, and Theorem 7.1 shows that V KG,0(s) =
V 0(s) for all s ∈ S

0.

Appendix B. Known variance LL(S) policy. The LL(S) policy was devel-
oped for normal measurement errors with unknown variance and uses a normal-gamma
prior for the unknown mean and measurement precision. To adapt it to the known-
variance case, we take both the shape and rate parameters in the gamma prior on
the measurement precision to infinity while keeping their ratio fixed to the known
measurement precision βε; we obtain a prior in which the measurement precision is
known perfectly and the alternative’s true value is still normally distributed. Taking
this limit in the allocation given by [12, Corollary 1] provides the following policy. The
steps below describe how the policy allocates τ measurements for the stage beginning
at a generic time n, and should be repeated a total of N/τ times beginning at time 0
and finishing at time N . We use the notation [i] to indicate the alternative whose μn

component is ith largest. That is, μn
[M ] ≥ · · · ≥ μn

[1].

(i) For each alternative calculate ni = βn
i /β

ε, which may be interpreted as the
effective number of times alternative i has been sampled.

(ii) Initialize S, the set of alternatives under consideration for measurement in
the current stage, to S = {1, . . . ,M}.

(iii) For each i ∈ S \ {[M ]} set λi,M as follows. If [M ] /∈ S, set λi,M = β[i]. If

[M ] ∈ S, set λi,M =
(
(βn

[M ])
−1 + (βn

[i])
−1

)−1
.

(iv) Calculate a tentative number of samples r[i] to take from alternative [i],

r[i] =
τ +

∑
j∈S nj∑

j∈S
√
γj/γ[i]

− n[i],

where

γ[i] =

⎧⎨
⎩
√
λi,M φ

(√
λi,M (μn

[M ] − μn
[i])

)
if [i] �= [M ],∑

[j]∈S\{[M ]} γ[j] if [i] = [M ].

(v) For each [i] ∈ S with r[i] < 0, remove [i] from S and set r[i] = 0. If any [i]
was removed, then return to step (iii).

(vi) Round the r[i] to integer values so that they still sum to τ .
(vii) Run r[i] additional samples for each alternative [i].
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